

A272004


Decimal expansion of Cp(3), the molar specific heat of an triatomic ideal gas at constant pressure, in J mol^1 K^1.


3




OFFSET

2,1


COMMENTS

Also the decimal expansion of Cv(4), the molar specific heat of a tetraatomic gas at constant volume.
The molar specific heat of an natomic gas at constant pressure and volume can be calculated respectively with the following formulae:
 Cv(n) = (n + 1/2) R;
 Cp(n) = (n + 3/2) R;
Where R = Cp(n)  Cv(n) = Cp(n)  Cp(n1) = A081822 is IUPAC's value of the gas constant.


LINKS

Table of n, a(n) for n=2..10.
Kshitij Education, Molar specific heat
Wikipedia, Heat capacity


FORMULA

Cp(3) = (3 + 3/2) * R = 9/2 * A081822.
Cp(3) = Cp(2) + R = Cv(3) + R = A272003 + A081822.


EXAMPLE

Cp(3) = 37.4150691 J mol^1 K^1.


CROSSREFS

Cf. A081822, A272001, A272002, A272003, A272005.
Sequence in context: A108297 A135928 A011444 * A010471 A077226 A175316
Adjacent sequences: A272001 A272002 A272003 * A272005 A272006 A272007


KEYWORD

more,cons,nonn


AUTHOR

Natan Arie Consigli, Jul 09 2016


STATUS

approved



