login
Decimal expansion of Cp(1), the molar specific heat of an atomic ideal gas at constant pressure.
7

%I #18 Jan 11 2020 15:57:47

%S 2,0,7,8,6,1,4,9,5

%N Decimal expansion of Cp(1), the molar specific heat of an atomic ideal gas at constant pressure.

%C Also the decimal expansion of Cv(2), the molar specific heat of a diatomic gas at constant volume.

%C The molar specific heat of an n-atomic gas at constant pressure and volume can be calculated respectively with the following formulae:

%C - Cv(n) = (n + 1/2) R;

%C - Cp(n) = (n + 3/2) R;

%C Where R = Cp(n) - Cv(n) = A081822 is IUPAC's value of the gas constant.

%F Cp(1) = (1 + 3/2) * R = 5/2 * A081822.

%F Cp(1) = Cv(1) + R = A272001 + A081822.

%e Cp(1) = 20.7861495 J mol^-1 K^-1.

%Y Cf. A081822, A272001, A272003.

%K cons,nonn,more

%O 2,1

%A _Natan Arie Consigli_, Jul 06 2016