login
g_n(16) where g is the weak Goodstein function defined in A266202.
1

%I #12 Jan 11 2020 15:57:47

%S 16,80,169,310,515,795,1163,1631,2211,2915,3755,4742,5889,7208,8711,

%T 10410,12317,14444,16803,19406,22265,25392,28799,32472,36447,40736,

%U 45351,50304,55607,61272,67311,73736,80559,87792,95447,103536,112071

%N g_n(16) where g is the weak Goodstein function defined in A266202.

%C For more information see A266201 and A266202.

%t g[k_, n_] :=

%t If[k == 0, n,

%t Total@Flatten@

%t MapIndexed[#1 (k + 2)^(#2 - 1) &,

%t Reverse@IntegerDigits[#, k + 1]] &@g[k - 1, n] - 1]; Table[

%t g[n, 16], {n, 0, 36}]

%Y Cf. A271557: G_n(10).

%Y Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0.

%K nonn,fini

%O 0,1

%A _Natan Arie Consigli_, May 24 2016