login
A271982
Primes p such that p + 42 is also prime.
5
5, 11, 17, 19, 29, 31, 37, 41, 47, 59, 61, 67, 71, 89, 97, 107, 109, 131, 137, 139, 149, 151, 157, 181, 191, 197, 199, 227, 229, 239, 241, 251, 269, 271, 307, 311, 317, 331, 337, 347, 359, 367, 379, 389, 397, 401, 419, 421, 449, 457, 461
OFFSET
1,1
COMMENTS
A134120 is a subsequence of this sequence.
LINKS
EXAMPLE
5 is a term because 5 + 42 = 47 is also prime.
11 is a term because 11 + 42 = 53 is also prime.
MAPLE
A271982:=n->`if`(isprime(n) and isprime(n+42), n, NULL): seq(A271982(n), n=1..10^3); # Wesley Ivan Hurt, Feb 12 2017
MATHEMATICA
Select[Prime@ Range@ 90, PrimeQ[# + 42] &] (* Michael De Vlieger, Apr 18 2016 *)
PROG
(Python)
from sympy import isprime
for i in range(3, 2001, 2):
if isprime(i) and isprime(i+42): print (i, end=', ')
(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+42), print1(p, ", "))); \\ Michel Marcus, Apr 19 2016
CROSSREFS
Sequence in context: A096264 A239709 A175249 * A338239 A179240 A176905
KEYWORD
nonn,changed
AUTHOR
Karl V. Keller, Jr., Apr 17 2016
STATUS
approved