login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271979 G_8(n), where G is the Goodstein function defined in A266201. 6
0, 211, 3325, 555551, 77777775, 20000000211, 30000003325, 50000555551, 70077777775, 100000000211, 100000003325, 100000555551, 100077777775 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,2
COMMENTS
At least half of the digits of every term (except a(14)) are the same.
Let n > 0:
a(4n) mod 100 = 211;
a(4n+1) mod 1000 = 3325;
a(4n+2) mod 1000000 = 555551;
a(4n+3) mod 100000000 = 77777775;
Proof for a(4n):
If x is divisible by 4 its hereditary representation in base 2 has all summands divisible by 4 and it cannot have the summands 1 and 2.
If we calculate G_1(x) we would end with:
G_1(x) = B_2(x)-1.
Clearly, B_2(x) = 3^a + 3^b + ... is divisible by 3^3 = 27 and that would mean that the representation of B_2(x)-1 would be B_2(x)-1 = X_3 + 2*3^2+2*3+2.
From now on, let X_n be a sum of powers of n (greater than the right term).
We finish proving the statement by calculating G_8(x):
G_2(x) = B_3(X_3 +2*3^2+2*3+2)-1 = X_4 + 2*4^2+2*4+2-1;
G_3(x) = B_4(X_4 +2*4^2+2*4-1)-1 = X_5 + 2*5^2+2*5+1-1;
G_4(x) = B_5(X_5 +2*5^2+2*5)-1 = X_6 + 2*6^2+2*6-1;
G_5(x) = B_6(X_6 +2*6^2+6+5)-1 = X_7 + 2*7^2+7+5-1;
G_6(x) = B_7(X_7 +2*7^2+7+4)-1 = X_8 + 2*8^2+8+4-1;
G_7(x) = B_8(X_8 +2*8^2+8+3)-1 = X_9 + 2*9^2+9+3-1;
G_8(x) = B_9(X_9 +2*9^2+9+2)-1 = X_10 + 2*10^2+10+2-1 = X_10 + 211;
So finally G_8(x) mod 100 = 211.
The other cases can be proved using the same reasoning.
a(17) = 3.3330...*10^3333, a(18) = 5.555550...*10^555555. - Pontus von Brömssen, Sep 25 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 3..16
EXAMPLE
Calculate G_8(5):
G_1(5) = B_2(5)-1 = B_2(2^2+1)-1 = 27;
G_2(5) = B_3(3^3)-1 = 4^4-1 = 255;
G_3(5) = B_4(3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^3 + 3*5^2 + 3*5 + 3-1 = 467;
G_4(5) = B_5(3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^3 + 3*6^2 + 3*6 + 2-1 = 775;
G_5(5) = B_6(3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^3 + 3*7^2 + 3*7 + 1-1 = 1197;
G_6(5) = B_7(3*7^3 + 3*7^2 + 3*7)-1 = 3*8^3 + 3*8^2 + 3*8-1 = 1751;
G_7(5) = B_8(3*8^3 + 3*8^2 + 2*8 + 7)-1 = 3*9^3 + 3*9^2 + 2*9 + 7-1 = 2454;
G_8(5) = B_9(3*9^3 + 3*9^2 + 2*9 + 6)-1 = 3*10^3 + 3*10^2 + 2*10 + 6-1 = 3325.
PROG
(Python)
from sympy.ntheory.factor_ import digits
def bump(n, b):
s=digits(n, b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1, b) for i in range(l) if s[i])
def A271979(n):
if n==3: return 0
for i in range(2, 10):
n=bump(n, i)-1
return n # Pontus von Brömssen, Sep 25 2020
CROSSREFS
Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A271977: G_6(n); A271978: G_7(n); this sequence: G_8(n); A271985: G_9(n); A271986: G_10(n); A266201: G_n(n).
Sequence in context: A291075 A330426 A071367 * A185719 A224101 A013529
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Apr 30 2016
EXTENSIONS
Incorrect program and terms removed by Pontus von Brömssen, Sep 25 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 04:38 EDT 2024. Contains 371696 sequences. (Running on oeis4.)