login
A271926
Denominator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
8
1, 1, 13, 19, 95, 155, 5735, 49321, 345247, 11137, 97051, 175741, 12829093, 164988103, 164988103, 306406477, 2286263713, 235485162439, 25667882705851, 420784962391, 420784962391, 8773680484481, 166699929205139, 317414933691977, 16706049141683, 31931815448027, 5013295025340239
OFFSET
1,3
LINKS
EXAMPLE
3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
MAPLE
f3:=proc(n) local j;
(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)), j=0..n-1)-1); end;
t3:=[seq(f3(n), n=1..50)];
map(numer, t3);
map(denom, t3);
MATHEMATICA
Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)), {j, 0, n-1}]-1, {n, 1, 20}]//Denominator (* Vaclav Kotesovec, Oct 13 2017 *)
CROSSREFS
Sequences of fractions from de Gier paper: A271919-A271926.
Sequence in context: A158332 A241486 A180531 * A090258 A241246 A153266
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 04 2016
STATUS
approved