login
A271919
Numerator of Product_{j=1..n-1} ((3*j+1)/(3*j+2)).
8
1, 4, 7, 7, 13, 104, 494, 988, 190, 5320, 20615, 589, 1147, 11470, 246605, 246605, 2416729, 62834954, 4488211, 4488211, 8831641, 10869712, 182067676, 2548947464, 2514502228, 27300309904, 134795280151, 269590560302, 3134773957, 25078191656, 570528860174, 60055669492, 59442856538
OFFSET
1,2
LINKS
J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
EXAMPLE
1, 4/5, 7/10, 7/11, 13/22, 104/187, 494/935, 988/1955, 190/391, 5320/11339, 20615/45356, 589/1334, 1147/2668, 11470/27347, ...
MAPLE
f:=proc(n) local j;
mul(((3*j+1)/(3*j+2)), j=1..n-1); end;
t1:=[seq(f(n), n=1..50)];
map(numer, t1);
map(denom, t1);
MATHEMATICA
a[n_] := Product[(3j + 1)/(3j + 2), {j, 1, n - 1}] // Numerator;
Array[a, 33] (* Jean-François Alcover, Nov 17 2017 *)
PROG
(PARI) a(n) = numerator(prod(j=1, n-1, ((3*j+1)/(3*j+2)))); \\ Michel Marcus, Nov 17 2017
CROSSREFS
Sequences of fractions from de Gier paper: A271919-A271926.
Sequence in context: A063194 A071529 A349537 * A201125 A154922 A060409
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 04 2016
STATUS
approved