login
A271911
Number of ways to choose three distinct points from a 2 X n grid so that they form an isosceles triangle.
1
0, 4, 10, 16, 24, 32, 42, 52, 64, 76, 90, 104, 120, 136, 154, 172, 192, 212, 234, 256, 280, 304, 330, 356, 384, 412, 442, 472, 504, 536, 570, 604, 640, 676, 714, 752, 792, 832, 874, 916, 960, 1004, 1050, 1096, 1144, 1192, 1242, 1292, 1344, 1396, 1450, 1504
OFFSET
1,2
FORMULA
Conjectured g.f.: 2*x*(2*x^2-x-2)/((x+1)*(x-1)^3). It would be nice to have a proof!
Conjectures from Colin Barker, Apr 24 2016: (Start)
a(n) = (-1+(-1)^n+16*n+2*n^2)/4, or equivalently, a(n) = (n^2+8*n)/2 if n even, (n^2+8*n-1)/2 if n odd.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>4.
(End)
The conjectured g.f. and recurrence are true. See paper in links. - Chai Wah Wu, May 07 2016
EXAMPLE
n=3: Label the points
1 2 3
4 5 6
There are 8 small isosceles triangles like 124 plus 135 and 246, so a(3) = 10.
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 4, 10, 16}, 60] (* Harvey P. Dale, May 10 2018 *)
CROSSREFS
Row 2 of A271910.
Same start as, but totally different from, 2*A213707.
Sequence in context: A049881 A341064 A366661 * A322948 A277368 A067274
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 24 2016
EXTENSIONS
More terms from Harvey P. Dale, May 10 2018
STATUS
approved