login
A271905
Number of singular vector tuples for a general n X n X n tensor.
6
1, 6, 37, 240, 1621, 11256, 79717, 572928, 4164841, 30553116, 225817021, 1679454816, 12556853401, 94313192616, 711189994357, 5381592930816, 40848410792017, 310909645663332, 2372280474687277, 18141232682656320, 139010366280363601, 1067160872528170536, 8206301850166625797, 63203453697218605440
OFFSET
1,2
REFERENCES
Bernd Sturmfels, Eigenvectors of Tensors, Colloquium Talk, Rutgers University, Apr 22 2016.
LINKS
Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016.
Shalosh B. Ekhad and Doron Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172 [math.CO], 2016.
Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Found. Comput. Math. 14 (2014), no. 6, 1209-1242.
FORMULA
From Eq. (1.3) of Ottaviani-Friedland (2014), a(n) is the coefficient of (abc)^(n-1) in the polynomial
{((a+b)^n-c^n)*((a+c)^n-b^n)*((b+c)^n-a^n)} / {(a+b-c)*(a+c-b)*(b+c-a)}.
a(n) satisfies the following fifth-order recurrence equation with polynomial coefficients:
72*(n + 2)*(245*n^4 + 3094*n^3 + 14447*n^2 + 29474*n + 22100)*(n + 1)^2*a(n) - (n + 2)*(21805*n^6 + 330981*n^5 + 2012733*n^4 + 6230951*n^3 + 10263446*n^2 + 8425060*n + 2639760)*a(n + 1) + (-10279296 - 13230*n^7 - 249641*n^6 - 29331496*n - 22847777*n^3 - 1998705*n^5 - 8785333*n^4 - 35069178*n^2)*a(n + 2) + (16026528 + 21560*n^7 + 413637*n^6 + 3343917*n^5 + 14735333*n^4 + 38132651*n^3 + 57777574*n^2 + 47273504*n)*a(n + 3) - (4410*n^6 + 70147*n^5 + 452903*n^4 + 1516515*n^3 + 2769127*n^2 + 2601986*n + 975888)*(n + 4)*a(n + 4) + (n + 5)*(n + 4)*(n + 3)*(245*n^4 + 2114*n^3 + 6635*n^2 + 8882*n + 4224)*a(n + 5) = 0
with initial conditions
[a(1), ..., a(5)] = [1, 6, 37, 240, 1621]
and asymptotically
a(n) ~ (2/(sqrt(3)*Pi))*8^n/n.
MATHEMATICA
a[1] = 1;
a[n_] := Module[{a, b, c, s}, s = Series[(((a + b)^n - c^n)((a + c)^n - b^n)((b + c)^n - a^n))/((a + b - c)(a + c - b)(b + c - a)), {a, 0, n}, {b, 0, n}, {c, 0, n}] // Normal // Expand; Cases[List @@ s, k_Integer a^(n-1) b^(n-1) c^(n-1)] /. (a|b|c) -> 1 // First];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Aug 18 2018 *)
CROSSREFS
See A272551 for the n X n X n X n version.
Column k=3 of A284308.
Cf. A274308.
Sequence in context: A196834 A005389 A080954 * A351152 A355957 A073013
KEYWORD
nonn
AUTHOR
Doron Zeilberger, Apr 21 2016
STATUS
approved