Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Apr 16 2016 20:51:10
%S 33164857769,33164857771,33164857777,33164857787,33164857801,
%T 33164857819,33164857841,33164857867,33164857897,33164857931,
%U 33164857969,33164858011,33164858347,33164858569,33164858737,33164859019,33164859569,33164859691,33164859817,33164860219,33164860507,33164862769,33164863177,33164864731,33164864969,33164865457,33164865961,33164866481,33164868427,33164869321
%N Primes of the form 33164857769 + 2*n^2.
%C The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348 and A165234.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-generating Polynomial</a>
%e For n=0, we get 33164857769, which is a prime as determined in A271348.
%e For n=1, we get 33164857769 + 2*1^2 = 33164857771, which is a prime as determined in A271348.
%t Select[Table[33164857769+2*n^2, {n, 0, 100}], PrimeQ]
%o (PARI) for(n=0, 100, isprime(33164857769+2*n^2) && print1(33164857769+2*n^2, ", "))
%Y Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271366, A271819, A271820 (similar sequences whose first term is in A271348).
%K nonn
%O 1,1
%A _Waldemar Puszkarz_, Apr 14 2016