login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271775 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 (x >= y >= z <= w) with x - y a square, where w,x,y,z are nonnegative integers. 38
1, 2, 2, 1, 2, 2, 3, 2, 1, 4, 3, 1, 2, 2, 3, 2, 3, 5, 5, 3, 2, 3, 4, 3, 1, 4, 6, 5, 4, 3, 5, 3, 2, 5, 4, 3, 5, 4, 5, 2, 2, 8, 9, 5, 4, 8, 2, 1, 3, 5, 9, 7, 6, 2, 7, 4, 1, 5, 6, 6, 4, 5, 7, 8, 2, 6, 12, 7, 5, 4, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 3, 11, 47, 2^{4k+3}*m (k = 0,1,2,... and m = 1, 3, 7, 15, 79).
(ii) Let a and b be positive integers with a <= b and gcd(a,b) squarefree. Then any natural number can be written as x^2 + y^2 + z^2 + w^2 with w,x,y,z nonnegative integers and a*x-b*y a square, if and only if (a,b) is among the ordered pairs (1,1), (2,1), (2,2), (4,3), (6,2).
(iii) Let a and b be positive integers with gcd(a,b) squarefree. Then any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x+b*y a square, if and only if {a,b} is among {1,2}, {1,3} and {1,24}.
(iv) Let a,b,c be positive integers with a <= b and gcd(a,b,c) squarefree. Then, any natural number can be written as x^2 + y^2 + z^2 + w^2 with w,x,y,z nonnegative integers and a*x+b*y-c*z a square, if and only if (a,b,c) is among the triples (1,1,1), (1,1,2), (1,2,1), (1,2,2), (1,2,3), (1,3,1), (1,3,3), (1,4,4), (1,5,1), (1,6,6), (1,8,6), (1,12,4), (1,16,1), (1,17,1), (1,18,1), (2,2,2), (2,2,4), (2,3,2), (2,3,3), (2,4,1), (2,4,2), (2,6,1), (2,6,2), (2,6,6), (2,7,4), (2,7,7), (2,8,2), (2,9,2), (2,32,2), (3,3,3), (3,4,2), (3,4,3), (3,8,3), (4,5,4), (4,8,3), (4,9,4), (4,14,14), (5,8,5), (6,8,6), (6,10,8), (7,9,7), (7,18,7), (7,18,12), (8,9,8), (8,14,14), (8,18,8), (14,32,14), (16,18,16), (30,32,30), (31,32,31), (48,49,48), (48,121,48).
(v) Let a,b,c be positive integers with b <= c and gcd(a,b,c) squarefree. Then, any natural number can be written as x^2 + y^2 + z^2 + w^2 with w,x,y,z nonnegative integers and a*x-b*y-c*z a square, if and only if (a,b,c) is among the triples (1,1,1), (2,1,1), (2,1,2), (3,1,2) and (4,1,2).
(vi) Let a,b,c,d be positive integers with a <= b, c <= d and gcd(a,b,c,d) squarefree. Then, any natural number can be written as x^2 + y^2 + z^2 + w^2 with w,x,y,z nonnegative integers and a*x+b*y-(c*z+d*w) a square, if and only if (a,b,c,d) is among the quadruples (1,2,1,1), (1,2,1,2), (1,3,1,2), (1,4,1,3), (2,4,1,2), (2,4,2,4), (8,16,7,8), (9,11,2,9) and (9,16,2,7).
(vii) Let a,b,c,d be positive integers with a <= b <= c and gcd(a,b,c,d) squarefree. Then, any natural number can be written as x^2 + y^2 + z^2 + w^2 with w,x,y,z nonnegative integers and a*x+b*y+c*z-d*w a square, if and only if (a,b,c,d) is among the quadruples (1,1,2,1), (1,2,3,1), (1,2,3,3), (1,2,4,2), (1,2,4,4), (1,2,5,5), (1,2,6,2), (1,2,8,1), (2,2,4,4), (2,4,6,4), (2,4,6,6), and (2,4,8,2).
It is known that any natural number not of the form 4^k*(16*m+14) (k,m = 0,1,2,...) can be written as x^2 + y^2 + 2*z^2 = x^2 + y^2 + z^2 + z^2 with x,y,z nonnegative integers.
See also A271510, A271513, A271518, A271644, A271665, A271714, A271721 and A271724 for other conjectures refining Lagrange's four-square theorem.
REFERENCES
L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939, pp. 112-113.
LINKS
Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with 1 = 1 > 0 < 1 and 1 - 1 = 0^2.
a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 = 1 = 1 < 2 and 1 - 1 = 0^2.
a(8) = 1 since 8 = 2^2 + 2^2 + 0^2 + 0^2 with 2 = 2 > 0 = 0 and 2 - 2 = 0^2.
a(11) = 1 since 11 = 1^2 + 1^2 + 0^2 + 3^2 with 1 = 1 > 0 < 3 and 1 - 1 = 0^2.
a(24) = 1 since 24 = 2^2 + 2^2 + 0^2 + 4^2 with 2 = 2 > 0 < 4 and 2 - 2 = 0^2.
a(47) = 1 since 47 = 3^2 + 3^2 + 2^2 + 5^2 with 3 = 3 > 2 < 5 and 3 - 3 = 0^2.
a(53) = 2 since 53 = 3^2 + 2^2 + 2^2 + 6^2 with 3 > 2 = 2 < 6 and 3 - 2 = 1^2, and also 53 = 6^2 + 2^2 + 2^2 + 3^2 with 6 > 2 = 2 < 3 and 6 - 2 = 2^2.
a(56) = 1 since 56 = 6^2 + 2^2 + 0^2 + 4^2 with 6 > 2 > 0 < 4 and 6 - 2 = 2^2.
a(120) = 1 since 120 = 8^2 + 4^2 + 2^2 + 6^2 with 8 > 4 > 2 < 6 and 8 - 4 = 2^2.
a(632) = 1 since 632 = 16^2 + 12^2 + 6^2 + 14^2 with 16 > 12 > 6 < 14 and 16 - 12 = 2^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[x-y]&&SQ[n-x^2-y^2-z^2], r=r+1], {z, 0, Sqrt[n/4]}, {y, z, Sqrt[(n-z^2)/2]}, {x, y, Sqrt[(n-y^2-z^2)]}]; Print[n, " ", r]; Continue, {n, 0, 70}]
CROSSREFS
Sequence in context: A342789 A050333 A343189 * A143999 A137419 A057536
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:18 EDT 2024. Contains 371964 sequences. (Running on oeis4.)