login
A271766
Number of set partitions of [n] with minimal block length multiplicity equal to six.
2
1, 0, 0, 0, 0, 0, 10395, 0, 0, 0, 0, 0, 383563180, 523783260, 6547290750, 3055402350, 157964301495, 14054850810, 34828180582195, 91670862398500, 448593283888750, 11612610774464700, 7681370284312725, 6594450798260325, 179804372693675480751, 11896760875264765500
OFFSET
6,7
LINKS
FORMULA
a(n) = A271424(n,6).
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 6)-b(n$2, 7):
seq(a(n), n=6..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 6] - b[n, n, 7];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A271424.
Sequence in context: A226599 A374272 A305332 * A104439 A290035 A289954
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved