login
A271745
Number of set partitions of [n] such that 6 is the largest element of the last block.
2
104, 250, 692, 2110, 6932, 24190, 88772, 340030, 1351412, 5546110, 23407652, 101247550, 447454292, 2015029630, 9224364932, 42832260670, 201341787572, 956443162750, 4584181712612, 22137843427390, 107584138943252, 525581866073470, 2578798342362692
OFFSET
6,1
FORMULA
G.f.: 2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / Product_{j=1..5} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 16 + 5*2^(n-3) + 35*3^(n-6) + 11*4^(n-6) + 5^(n-6) for n>6.
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n>11.
(End)
MATHEMATICA
Join[{104}, LinearRecurrence[{15, -85, 225, -274, 120}, {250, 692, 2110, 6932, 24190}, 30]] (* Vincenzo Librandi, Apr 14 2016 *)
PROG
(Magma) I:=[104, 250, 692, 2110, 6932, 24190]; [n le 6 select I[n] else 15*Self(n-1)-85*Self(n-2)+225*Self(n-3)-274*Self(n-4)+120*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 14 2016
(PARI) x='x+O('x^99); Vec(2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / (120*x^5-274*x^4+225*x^3-85*x^2+15*x-1)) \\ Altug Alkan, Apr 14 2016
CROSSREFS
Column k=6 of A271466.
Sequence in context: A258549 A121962 A235011 * A046298 A298325 A258556
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved