login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271665 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 such that w^2 + 4*x*y + 8*y*z + 32*z*x is a square, where w is a positive integer and x,y,z are nonnegative integers. 38
1, 3, 1, 1, 6, 3, 1, 3, 1, 6, 2, 1, 7, 10, 1, 1, 9, 3, 2, 6, 2, 2, 3, 3, 8, 10, 1, 1, 10, 2, 2, 3, 5, 8, 11, 1, 7, 13, 2, 6, 16, 6, 1, 2, 6, 2, 3, 1, 3, 16, 4, 7, 9, 3, 2, 10, 4, 9, 4, 1, 8, 15, 1, 1, 15, 5, 2, 9, 6, 8, 2, 3, 10, 13, 4, 2, 17, 7, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*3^m, 4^k*3^m*43, 4^k*9^m*q (k,m = 0, 1, 2, ... and q = 7, 15, 79, 95, 141, 159, 183).
(ii) Any positive integer n can be written as w^2 + x^2 + y^2 + z^2 with w*x + x*y + 2*y*z + 3*z*x (or w*x + 3*x*y + 8*y*z + 5*z*x) twice a square, where w is a positive integer and x,y,z are nonnegative integers.
(iii) For each k = 1, 2, 8, any positive integer can be written as w^2 + x^2 + y^2 + z^2 with w^2 + k*(x*y+y*z) a square, where w is a positive integer and x,y,z are nonnegative integers.
(iv) For each ordered pair (b,c) = (16,4), (24,4), (32,16), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x^2 + b*y^2 + c*x*z + c*y*z + c*z*w is a square.
We also guess that for each triple (b,c,d) = (1,3,4), (1,6,8), (1,7,24), (1,8,15), (1,10,24), (1,12,35), (1,14,48), (1,20,48), (2,1,2), (2,4,2), (2,4,7), (2,6,7), (2,8,4), (2,8,14), (2,8,31), (2,10,23), (2,12,14), (2,12,34), (2,14,47), (3,1,1), (3,1,4), (3,1,16), (3,2,14), (3,2,17), (3,2,38), (3,3,3), (3,3,13), (3,4,1), (3,4,4), (3,5,11), (3,6,3), (3,6,6), (3,6,26), (3,8,2), (3,8,13), (3,8,22), (3,9,39), (3,12,12), (3,12,33), (3,15,1), any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers and x^2 + b*y^2 + c*x*z + d*y*z a square.
See also A271510, A271513, A271518 and A271644 for other conjectures refining Lagrange's four-square theorem.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723, 2016.
EXAMPLE
a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 1^2 + 4*0*1 + 8*1*1 + 32*1*0 = 3^2.
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2^2 + 4*2*0 + 8*0*0 + 32*0*0 = 2^2.
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 1^2 + 4*2*1 + 8*1*1 + 32*1*2 = 9^2.
a(15) = 1 since 15 = 1^2 + 2^2 + 1^2 + 3^2 with 1^2 + 4*2*1 + 8*1*3 + 32*3*2 = 15^2.
a(43) = 1 since 43 = 3^2 + 3^2 + 4^2 + 3^2 with 3^2 + 4*3*4 + 8*4*3 + 32*3*3 = 21^2.
a(79) = 1 since 79 = 5^2 + 3^2 + 6^2 + 3^2 with 5^2 + 4*3*6 + 8*6*3 + 32*3*3 = 23^2.
a(95) = 1 since 95 = 5^2 + 6^2 + 5^2 + 3^2 with 5^2 + 4*6*5 + 8*5*3 + 32*3*6 = 29^2.
a(129) = 1 since 129 = 5^2 + 6^2 + 8^2 + 2^2 with 5^2 + 4*6*8 + 8*8*2 + 32*2*6 = 27^2.
a(141) = 1 since 141 = 8^2 + 5^2 + 4^2 + 6^2 with 8^2 + 4*5*4 + 8*4*6 + 32*6*5 = 36^2.
a(159) = 1 since 159 = 11^2 + 1^2 + 6^2 + 1^2 with 11^2 + 4*1*6 + 8*6*1 + 32*1*1 = 15^2.
a(183) = 1 since 183 = 1^2 + 9^2 + 10^2 + 1^2 with 1^2 + 4*9*10 + 8*10*1 + 32*1*9 = 27^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[4x*y+8*y*z+32*z*x+(n-x^2-y^2-z^2)], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
Sequence in context: A067433 A256697 A133567 * A184049 A125230 A208334
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 12 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 14:54 EDT 2024. Contains 371960 sequences. (Running on oeis4.)