login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271649 a(n) = 2*(n^2 - n + 2). 4
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers n such that 2n - 7 a perfect square.

Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 4*A000124(n).

a(n) = 2*A014206(n).

a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016

EXAMPLE

a(1) = 2*(1^2 - 1 + 2) = 4.

MAPLE

A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016

MATHEMATICA

Table[2 (n^2 - n + 2), {n, 53}] (* or *)

Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)

Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)

GaloisNumber[n_, q_] := Sum[QBinomial[n, m, q], {m, 0, n}]; Table[GaloisNumber[3, n], {n, 0, 50}] (* Artur Jasinski, Aug 31 2016 *)

PROG

(MAGMA) [ 2*n^2 - 2*n + 4: n in [1..60]];

(MAGMA) [ n: n in [1..6000] | IsSquare(2*n-7)];

(PARI) a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

CROSSREFS

Cf. A000124, A014206.

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Sequence in context: A020193 A176817 A050856 * A128441 A009861 A260515

Adjacent sequences:  A271646 A271647 A271648 * A271650 A271651 A271652

KEYWORD

nonn,easy

AUTHOR

Juri-Stepan Gerasimov, Apr 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:59 EDT 2019. Contains 328147 sequences. (Running on oeis4.)