login
A271634
Numbers n such that Bernoulli number B_{n} has denominator 510.
27
16, 32, 64, 128, 304, 496, 608, 752, 944, 992, 1504, 1648, 1744, 1984, 2512, 2672, 3008, 3152, 3296, 3376, 3488, 3568, 3632, 3664, 3856, 3968, 4112, 4208, 4528, 4976, 5024, 5072, 5344, 5584, 5648, 5776, 5872, 6016, 6064, 6128, 6224, 6304, 6592, 6752, 7024, 7136, 7264
OFFSET
1,1
COMMENTS
510 = 2 * 3 * 5 * 17.
All terms are multiple of a(1) = 16.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 463.
LINKS
EXAMPLE
Bernoulli B_{16} is -3617/510, hence 16 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 510);
MATHEMATICA
Select[Range[0, 1000], Denominator[BernoulliB[#]] == 510 &] (* Robert Price, Apr 21 2016 *)
PROG
(PARI) isok(n) = denominator(bernfrac(n)) == 510; \\ Michel Marcus, Apr 22 2016
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 21 2016
EXTENSIONS
More terms from Michel Marcus, Apr 22 2016
STATUS
approved