OFFSET
1,1
COMMENTS
Numbers n such that 2n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
EXAMPLE
a(1) = 2*1^2 - 4*1 + 4 = 2.
MATHEMATICA
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3, -3, 1}, {2, 4, 10}, 60] (* Harvey P. Dale, Jul 18 2023 *)
PROG
(Magma) [ 2*n^2 - 4*n + 4: n in [1..60]];
(Magma) [ n: n in [1..6000] | IsSquare(2*n-4)];
(PARI) x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
(PARI) a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
CROSSREFS
Cf. A002522, numbers n such that 2n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).
KEYWORD
nonn,easy
AUTHOR
Juri-Stepan Gerasimov, Apr 11 2016
STATUS
approved