OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = 1 + Sum_{k=1..n-1} (-1)^(n-k-1)*k*binomial(2*n-3*k-1,n-k-1))/(n-k).
a(n) ~ (-1)^n * 2^(2*n+2) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 11 2016
D-finite with recurrence: (-n+1)*a(n) + 3*(-n+3)*a(n-1) + 2*(2*n-5)*a(n-2) + (n-1)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Apr 15 2016
MATHEMATICA
Table[1 + (Sum[(k (-1)^(n - k - 1) Binomial[2 n - 3 k - 1, n - k - 1])/(n - k), {k, 1, n - 1}]), {n, 0, 27}] (* or *)
CoefficientList[Series[-2/(x Sqrt[4 x + 1] + x - 2), {x, 0, 27}], x] (* Michael De Vlieger, Apr 15 2016 *)
PROG
(Maxima)
a(n):=1+(sum(((-1)^(n-k-1)*k*binomial(2*n-3*k-1, n-k-1))/(n-k), k, 1, n-1));
(PARI) x='x+O('x^99); Vec(-2/(x*sqrt(4*x+1)+x-2)) \\ Altug Alkan, Apr 15 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vladimir Kruchinin, Apr 11 2016
STATUS
approved