This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271622 Expansion of -2/(x*sqrt(4*x+1)+x-2). 2
 1, 1, 2, 2, 5, 2, 18, -19, 115, -296, 1115, -3632, 12868, -44803, 159577, -570455, 2059182, -7476086, 27311129, -100274479, 369888135, -1370063926, 5093782015, -19002596870, 71109902844, -266855928791, 1004045621663, -3786790876945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 1 + Sum_{k=1..n-1} (-1)^(n-k-1)*k*binomial(2*n-3*k-1,n-k-1))/(n-k). a(n) ~ (-1)^n * 2^(2*n+2) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 11 2016 Conjecture: (-n+1)*a(n) + 3*(-n+3)*a(n-1) + 2*(2*n-5)*a(n-2) + (n-1)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Apr 15 2016 MATHEMATICA Table[1 + (Sum[(k (-1)^(n - k - 1) Binomial[2 n - 3 k - 1, n - k - 1])/(n - k), {k, 1, n - 1}]), {n, 0, 27}] (* or *) CoefficientList[Series[-2/(x Sqrt[4 x + 1] + x - 2), {x, 0, 27}], x] (* Michael De Vlieger, Apr 15 2016 *) PROG (Maxima) a(n):=1+(sum(((-1)^(n-k-1)*k*binomial(2*n-3*k-1, n-k-1))/(n-k), k, 1, n-1)); (PARI) x='x+O('x^99); Vec(-2/(x*sqrt(4*x+1)+x-2)) \\ Altug Alkan, Apr 15 2016 CROSSREFS Cf. A000108. Sequence in context: A114976 A085483 A271654 * A324505 A226135 A284464 Adjacent sequences:  A271619 A271620 A271621 * A271623 A271624 A271625 KEYWORD sign,easy AUTHOR Vladimir Kruchinin, Apr 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:44 EST 2019. Contains 329849 sequences. (Running on oeis4.)