OFFSET
0,1
LINKS
Nicholas Matteo, Table of n, a(n) for n = 0..384
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
Wikipedia, Goodstein sequence
EXAMPLE
G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
PROG
(PARI) lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 10 2016
EXTENSIONS
a(3) corrected by Nicholas Matteo, Aug 15 2019
STATUS
approved