login
A271555
a(n) = G_n(8), where G is the Goodstein function defined in A266201.
12
8, 80, 553, 6310, 93395, 1647195, 33554571, 774841151, 20000000211, 570623341475, 17832200896811, 605750213184854, 22224013651116433, 875787780761719208, 36893488147419103751, 1654480523772673528938, 78692816150593075151501, 3956839311320627178248684
OFFSET
0,1
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
EXAMPLE
G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
PROG
(PARI) lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A266201: G_n(n).
Sequence in context: A342353 A055346 A159710 * A203290 A100472 A043035
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 10 2016
EXTENSIONS
a(3) corrected by Nicholas Matteo, Aug 15 2019
STATUS
approved