OFFSET
0,1
LINKS
Nicholas Matteo, Table of n, a(n) for n = 0..10000
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
Wikipedia, Goodstein sequence
EXAMPLE
G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30;
G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 = 4^4 + 4 - 1 = 259;
G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127;
G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657;
G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543;
G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215;
G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879.
PROG
(PARI) lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 10 2016
STATUS
approved