login
A271534
Numbers n with digits abc..xyz such that n = (a + b + c + ... + x + y + z) + (a^b + b^c + c^d + ... + x^y + y^z).
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 33, 92, 1683552
OFFSET
1,2
COMMENTS
a(12) is the last term. The sequence is finite because it can't contain numbers with more than 10 digits. Both conventions for indeterminate form 0^0, i.e., 0^0=0 and 0^0=1, lead to the same values. - Giovanni Resta, Apr 12 2016
EXAMPLE
33 is a term because 33 = 3 + 3 + 3^3.
1683552 is a term because 1683552 = (1 + 6 + 8 + 3 + 5 + 5 + 2) + (1^6 + 6^8 + 8^3 + 3^5 + 5^5 + 5^2).
MATHEMATICA
Unprotect[Power]; Power[0, 0]=1; okQ[n_]:=Block[{d = IntegerDigits[n]}, n == Plus @@ d + Plus @@ Power @@@ Partition[d, 2, 1]]; Select[Range[2*10^6], okQ] (* Giovanni Resta, Apr 12 2016 *)
CROSSREFS
Cf. A005188.
Sequence in context: A295638 A357195 A173551 * A072482 A254958 A302502
KEYWORD
nonn,base,fini,full
AUTHOR
EXTENSIONS
a(12) from Giovanni Resta, Apr 12 2016
STATUS
approved