This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271532 a(n) = (-1)^n*(n + 1)*(5*n^2 + 10*n + 1). 0
 1, -32, 123, -304, 605, -1056, 1687, -2528, 3609, -4960, 6611, -8592, 10933, -13664, 16815, -20416, 24497, -29088, 34219, -39920, 46221, -53152, 60743, -69024, 78025, -87776, 98307, -109648, 121829, -134880, 148831, -163712, 179553, -196384, 214235, -233136, 253117, -274208, 296439 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Alternating sum of centered dodecahedral numbers (A005904). Without signs and up to offset, this is row 5 of the array A284873. - Andrey Zabolotskiy, Oct 10 2017 LINKS OEIS Wiki, Centered Platonic numbers Eric Weisstein's World of Mathematics, Platonic Solid Index entries for linear recurrences with constant coefficients, signature (-4,-6,-4,-1) FORMULA G.f.: (1 - 28*x + x^2)/(1 + x)^4. E.g.f.: exp(-x)*(1 - 31*x + 30*x^2 - 5*x^3). a(n) = -4*a(n-1) - 6*a(n-2) - 4*a(n-3) - a(n-4). MATHEMATICA Table[(-1)^n (n + 1) (5 n^2 + 10 n + 1), {n, 0, 38}] LinearRecurrence[{-4, -6, -4, -1}, {1, -32, 123, -304}, 39] PROG (Python) for n in xrange(0, 10**3):print((-1)**n*(n+1)*(5*n**2+10*n+1)) # Soumil Mandal, Apr 10 2016 (PARI) a(n)=(-1)^n*(n+1)*(5*n^2+10*n+1) \\ Charles R Greathouse IV, Jul 26 2016 CROSSREFS Cf. A000578, A004466, A005904, A006527, A005900, A006566. Sequence in context: A203965 A203958 A005903 * A264480 A247155 A239728 Adjacent sequences:  A271529 A271530 A271531 * A271533 A271534 A271535 KEYWORD sign,easy AUTHOR Ilya Gutkovskiy, Apr 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 05:51 EST 2019. Contains 319415 sequences. (Running on oeis4.)