This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271525 Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit. 5
 2, 3, 5, 9, 2, 0, 9, 4, 8, 0, 5, 0, 4, 4, 0, 9, 2, 3, 6, 3, 4, 0, 7, 9, 2, 6, 7, 6, 0, 3, 0, 5, 8, 4, 3, 4, 7, 6, 0, 4, 1, 9, 5, 7, 3, 5, 8, 9, 5, 9, 1, 5, 1, 2, 9, 4, 8, 3, 0, 4, 6, 6, 0, 0, 4, 5, 9, 5, 9, 5, 9, 8, 4, 0, 8, 0, 3, 1, 6, 2, 6, 5, 2, 4, 3, 4, 5, 7, 3, 8, 7, 0, 1, 0, 6, 7, 3, 6, 2, 1, 6, 0, 3, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The corresponding imaginary part of eta'(i) is in A271526. LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Eric Weisstein's World of Mathematics, Dirichlet Eta Function FORMULA Equals real(eta'(i)). EXAMPLE 0.235920948050440923634079267603058434760419573589591512948304660... MATHEMATICA RealDigits[Re[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *) PROG (PARI) \\ Derivative of Dirichlet eta function (fails for z=1): derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z); real(derdireta(I)) \\ Evaluation CROSSREFS Cf. A271523 (real(eta(i))), A271524 (imag(eta(i))), A271526(-imag(eta'(i))). Sequence in context: A279074 A120495 A107477 * A232562 A064358 A109736 Adjacent sequences:  A271522 A271523 A271524 * A271526 A271527 A271528 KEYWORD nonn,cons AUTHOR Stanislav Sykora, Apr 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 17 06:45 EST 2018. Contains 318192 sequences. (Running on oeis4.)