login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of the real part of the Dirichlet function eta(z), at z=i, the imaginary unit.
4

%I #21 Apr 10 2016 12:16:33

%S 5,3,2,5,9,3,1,8,1,7,6,3,0,9,6,1,6,6,5,7,0,9,6,5,0,0,8,1,9,7,3,1,9,0,

%T 4,4,7,2,7,7,8,5,7,6,8,1,4,3,4,9,2,1,9,2,2,3,9,7,4,8,7,2,5,9,5,9,4,3,

%U 8,2,6,3,1,5,6,3,1,1,1,7,7,6,6,8,6,6,0,8,9,6,4,8,9,7,7,9,5,5,7,2,2,4,1,2,0

%N Decimal expansion of the real part of the Dirichlet function eta(z), at z=i, the imaginary unit.

%C The corresponding imaginary part of eta(i) is in A271524.

%H Stanislav Sykora, <a href="/A271523/b271523.txt">Table of n, a(n) for n = 0..2000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>

%F Equals real(eta(i)).

%e 0.53259318176309616657096500819731904472778576814349219223974872595...

%t First[RealDigits[Re[(1 - 2^(1 - I))*Zeta[I]], 10, 110]] (* _Robert Price_, Apr 09 2016 *)

%o (PARI) \\ The Dirichlet eta function (fails for z=1):

%o direta(z)=(1-2^(1-z))*zeta(z);

%o real(direta(I)) \\ Evaluation

%Y Cf. A002162 (eta(1)), A179311 (real(zeta(i))), A179836 (imag(-zeta(i))), A271524 (imag(eta(i))), A271525 (real(eta'(i))), A271526(-imag(eta'(i))).

%K nonn,cons

%O 0,1

%A _Stanislav Sykora_, Apr 09 2016