login
Tenth moments of the Rudin-Shapiro polynomials.
3

%I #18 Sep 19 2020 18:28:42

%S 1,252,4144,187328,5143296,182336512,5664518144,185202884608,

%T 5854499373056,187705543360512,5987197055401984,191926028833128448,

%U 6145480467693961216,196854507263106220032,6299857999165520871424,201565743393381566906368,6448321065980862740299776

%N Tenth moments of the Rudin-Shapiro polynomials.

%D Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.

%D Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.

%H Christophe Doche, <a href="https://doi.org/10.1090/S0025-5718-05-01736-9">Even moments of generalized Rudin-Shapiro polynomials</a>, Mathematics of computation 74.252 (2005): 1923-1935.

%H Christophe Doche and Laurent Habsieger, <a href="http://web.science.mq.edu.au/~doche/049.pdf">Moments of the Rudin-Shapiro polynomials</a>, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.

%F G.f.: -(369435906932736*t^11 -32160715112448*t^10 -2001454759936*t^9 -145223581696*t^8 -4454350848*t^7 +1392508928*t^6 -5865472*t^5 -4599808*t^4 +123648*t^3 +4768*t^2 -220*t -1) / (1+16*t) / (32*t-1) / (1443109011456*t^10 -135291469824*t^9 -6576668672*t^8 -528482304*t^7 -19922944*t^6 +5455872*t^5 -41984*t^4 -17664*t^3 +592*t^2 +16*t -1)

%Y Cf. A246036, A271494, A271495.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Apr 15 2016