This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271472 Binary representation of n in base i-1. 3
 0, 1, 1100, 1101, 111010000, 111010001, 111011100, 111011101, 111000000, 111000001, 111001100, 111001101, 100010000, 100010001, 100011100, 100011101, 100000000, 100000001, 100001100, 100001101, 110011010000, 110011010001, 110011011100, 110011011101, 110011000000, 110011000001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is A066321(n) converted from base 10 to base 2. Every Gaussian integer r+s*i (r, s ordinary integers) has a unique representation as a sum of powers of t = i-1. For example 3 = 1+b^2+b^3,  that is, "1101" in binary, which explains a(3) = 1101. See A066321 for further information. REFERENCES D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 172. (See also exercise 16, p. 177; answer, p. 494.) W. J. Penney, A "binary" system for complex numbers, JACM 12 (1965), 247-248. LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 N. J. A. Sloane, Table of n, (I-1)^n for n=0..100 PROG (Python) from gmpy2 import c_divmod u = ('0000', '1000', '0011', '1011') def A271472(n):     if n == 0:         return 0     else:         s, q = '', n         while q:             q, r = c_divmod(q, -4)             s += u[r]         return int(s[::-1]) # Chai Wah Wu, Apr 09 2016 CROSSREFS Cf. A066321. Sequence in context: A280612 A281039 A078199 * A147816 A050926 A083933 Adjacent sequences:  A271469 A271470 A271471 * A271473 A271474 A271475 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Apr 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 14:00 EDT 2019. Contains 326229 sequences. (Running on oeis4.)