%I #9 Nov 30 2016 01:02:47
%S 1,1,1,1,2,1,1,3,4,1,1,4,11,8,1,1,5,28,38,16,1,1,6,69,178,126,32,1,1,
%T 7,168,844,1008,415,64,1,1,8,407,4012,8590,5493,1369,128,1,1,9,984,
%U 19072,74148,81445,29879,4521,256,1
%N Array read by antidiagonals: T(n,m) = number of self-avoiding walks of any length from NW to SW corners on a grid with n rows and m columns.
%H Andrew Howroyd, <a href="/A271465/b271465.txt">Table of n, a(n) for n = 1..378</a>
%F T(1,n)=1, T(2,n)=n, T(n,1)=1, T(n,2)=2^(n-1).
%e The start of the sequence as table:
%e * 1 1 1 1 1 1 1 ...
%e * 1 2 3 4 5 6 7 ...
%e * 1 4 11 28 69 168 407 ...
%e * 1 8 38 178 844 4012 19072 ...
%e * 1 16 126 1008 8590 74148 638472 ...
%e * 1 32 415 5493 81445 1246850 19011465 ...
%e * 1 64 1369 29879 761047 20477490 550254085 ...
%e * ...
%Y Main diagonal is A271507. Rows include A005409, A214931. Columns include A006189, A216211. Cf. A064298 (paths from NW to SE).
%K nonn,tabl
%O 1,5
%A _Andrew Howroyd_, Apr 08 2016