

A271452


Decimal expansion of Hoffman's approximation to Pi.


1



3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 6, 4, 3, 8, 2, 2, 2, 1, 0, 3, 6, 3, 1, 7, 8, 8, 9, 3, 4, 4, 0, 0, 7, 2, 3, 4, 1, 6, 8, 7, 6, 9, 1, 5, 0, 9, 4, 2, 8, 5, 9, 6, 9, 5, 2, 1, 0, 6, 0, 7, 1, 5, 2, 4, 0, 7, 6, 2, 8, 2, 4, 9, 3, 7, 2, 5, 4, 1, 2, 8, 4, 3, 3, 4, 7, 8, 0, 7, 8, 9, 8, 4, 0, 6, 1, 2, 3, 7, 1, 8, 6, 7, 7, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The expression (Googol/11222.11122)^(1/193), with Googol fixed as 10^100, approximates Pi with an absolute error of about 5.4e11. The 'symmetry' of the denominator, the fact that 193 is a prime, and the fact that it relates Pi with Googol make it a rare curiosity.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..1000
D. W. Hoffman, A Pi Curiosity, College Mathematics Journal, 40 (2009), 399.
Eric Weisstein's World of Mathematics, Googol</a
Wikipedia, Approximations of Pi.
Wikipedia, Googol.


EXAMPLE

3.141592653643822210363178893440072341687691509428596952106071524 ...


PROG

(PARI) (10^100/11222.11122)^(1/193)
(MAGMA) SetDefaultRealField(RealField(100)); (10^100/11222.11122)^(1/193); // G. C. Greubel, Nov 04 2018


CROSSREFS

Cf. A000796, A244450.
Sequence in context: A000796 A212131 A114609 * A068089 A068079 A152042
Adjacent sequences: A271449 A271450 A271451 * A271453 A271454 A271455


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, Apr 08 2016


STATUS

approved



