login
A271442
a(n) is the smallest k such that sigma(2,x) = k has exactly n solutions, where sigma(2,x) is the sum of the squares of the divisors of x.
1
2, 1, 50, 22100, 6409000, 32045000, 1185665000, 11856650000, 628402450000, 1169065690000, 16338463700000, 81692318500000, 875993015300000, 1388769414500000, 8054862604100000, 88701519427300000, 443507597136500000, 80548626041000000
OFFSET
0,1
COMMENTS
Does a(n) exist for every n?
EXAMPLE
a(3) = 22100 because there are exactly 3 values x (120, 130, and 141) such that sigma(2,x) = 22100, and this property does not hold for any number smaller than 22100.
MATHEMATICA
t=Gather@ Sort@ DivisorSigma[2, Range@ 800000]; Join[{2}, Table[ Select[t, k == Length@ # &, 1][[1, 1]], {k, 8}]]
CROSSREFS
Sequence in context: A109347 A054210 A225778 * A092650 A353586 A363381
KEYWORD
nonn
AUTHOR
Giovanni Resta, Apr 20 2016
STATUS
approved