login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271424 Number T(n,k) of set partitions of [n] with minimal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 51, 0, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 771, 105, 0, 0, 0, 0, 1, 0, 3089, 945, 0, 105, 0, 0, 0, 1, 0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1, 0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1, 0, 627529, 26785, 24255, 0, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

At least one block length occurs exactly k times, and all block lengths occur at least k times.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Wikipedia, Partition of a set

EXAMPLE

T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.

T(4,2) = 3: 12|34, 13|24, 14|23.

T(4,4) = 1: 1|2|3|4.

T(6,3) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.

Triangle T(n,k) begins:

1;

0,     1;

0,     1,     1;

0,     4,     0,    1;

0,    11,     3,    0,   1;

0,    51,     0,    0,   0,   1;

0,   132,    55,   15,   0,   0, 1;

0,   771,   105,    0,   0,   0, 0, 1;

0,  3089,   945,    0, 105,   0, 0, 0, 1;

0, 18388,  1218, 1540,   0,   0, 0, 0, 0, 1;

0, 96423, 15456, 3150,   0, 945, 0, 0, 0, 0, 1;

MAPLE

with(combinat):

b:= proc(n, i, k) option remember; `if`(n=0, 1,

      `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)

        *b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))

    end:

T:= (n, k)-> b(n$2, k)-`if`(n=k, 0, b(n$2, k+1)):

seq(seq(T(n, k), k=0..n), n=0..12);

MATHEMATICA

multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]* b[n-i*j, i-1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; T[n_, k_] := b[n, n, k] - If[n == k, 0, b[n, n, k + 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 16 2017, adapted from Maple *)

CROSSREFS

Columns k=0-10 give A000007, A271426, A271762, A271763, A271764, A271765, A271766, A271767, A271768, A271769, A271770.

Row sums give A000110.

Main diagonal gives A000012.

T(2n,n) gives A001147.

T(3n,n) gives A271715.

Cf. A271423.

Sequence in context: A019974 A046781 A244530 * A117435 A282252 A268367

Adjacent sequences:  A271421 A271422 A271423 * A271425 A271426 A271427

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.