OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-8,2,1).
FORMULA
G.f.: x*(1 - 4*x + 2*x^2)/((1 - x)^2*(1 - 4*x - x^2)).
E.g.f.: (1/80)*(10*exp(x)*(2*x + 3) - 3*(5 + 3*sqrt(5))*exp((2 - sqrt(5))*x) + 3*(3*sqrt(5) - 5)*exp((2 + sqrt(5))*x)).
a(n) = 6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4).
a(n) = (1/80)*(20*n - 3*(5 + 3*sqrt(5))*(2 - sqrt(5))^n + 3*(3*sqrt(5) - 5)*(2 + sqrt(5))^n + 30).
Lim_{n->infinity} a(n + 1)/a(n) = 2 + sqrt(5) = phi^3 = A098317, where phi is the golden ratio (A001622).
a(n) = (2*n + 3 + 3*A033887(n-1))/8. - R. J. Mathar, Mar 12 2017
MATHEMATICA
RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == 4 a[n - 1] + a[n - 2] - n}, a, {n, 28}]
LinearRecurrence[{6, -8, 2, 1}, {0, 1, 2, 6}, 29]
PROG
(PARI) x='x+O('x^99); concat(0, Vec(x*(1-4*x+2*x^2)/((1-x)^2*(1-4*x-x^2)))) \\ Altug Alkan, Apr 06 2016
(PARI) a(n) = (3*fibonacci(3*n-2) + 2*n+3) >> 3; \\ Kevin Ryde, May 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 06 2016
STATUS
approved