%I #15 Apr 16 2016 20:50:52
%S 272259344081,272259344083,272259344089,272259344099,272259344113,
%T 272259344131,272259344153,272259344179,272259344209,272259344243,
%U 272259344281,272259344323,272259344369,272259344419,272259344881,272259345433,272259345539,272259347123,272259347281,272259347953
%N Primes of the form 272259344081 + 2*n^2.
%C The first 14 primes correspond to the values of n from 0 to 13. The first term is a member of A271348 and A165234.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-generating Polynomial</a>
%e For n=0, we get 272259344081, which is a prime as determined in A271348.
%e For n=1, we get 272259344081 + 2*1^2 = 272259344083, which is a prime as determined in A271348.
%t Select[Table[272259344081+2*n^2, {n, 0, 100}], PrimeQ]
%o (PARI) for(n=0, 100, isprime(272259344081+2*n^2) && print1(272259344081+2*n^2, ","))
%Y Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271818, A271819, A271820 (similar sequences whose first term is in A271348).
%K nonn
%O 1,1
%A _Waldemar Puszkarz_, Apr 05 2016