This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271359 a(n) = k*Fibonacci(2*n+1) + (k+1)*Fibonacci(2*n), where k=5. 3
 5, 16, 43, 113, 296, 775, 2029, 5312, 13907, 36409, 95320, 249551, 653333, 1710448, 4478011, 11723585, 30692744, 80354647, 210371197, 550758944, 1441905635, 3774957961, 9882968248, 25873946783, 67738872101, 177342669520, 464289136459, 1215524739857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1). FORMULA G.f.: (5+x) / (1-3*x+x^2). a(n) = 3*a(n-1)-a(n-2) for n>1. a(n) = (2^(-2-n)*((13-sqrt(5))*(3+sqrt(5))^(n+1) - (13+sqrt(5))*(3-sqrt(5))^(n+1))) / sqrt(5). a(n) = 6*Fibonacci(2*n+2) - Fibonacci(2*n+1) = 5*A001906(n+1) +A001906(n). PROG (PARI) a(n) = 5*fibonacci(2*n+1) + 6*fibonacci(2*n) (PARI) Vec((5+x)/(1-3*x+x^2) + O(x^50)) (MAGMA) k:=5; [k*Fibonacci(2*n+1)+(k+1)*Fibonacci(2*n): n in [0..30]]; // Bruno Berselli, Apr 06 2016 CROSSREFS Cf. A000045. Cf. A001906 (k=0), A002878 (k=1), A100545 (k=2, without the initial 2), A271357 (k=3), A271358 (k=4), this sequence (k=5). Sequence in context: A053221 A137221 A137234 * A299810 A079094 A144952 Adjacent sequences:  A271356 A271357 A271358 * A271360 A271361 A271362 KEYWORD nonn,easy AUTHOR Colin Barker, Apr 05 2016 EXTENSIONS Changed offset and adapted definition, programs and formulas by Bruno Berselli, Apr 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 15:59 EDT 2019. Contains 325185 sequences. (Running on oeis4.)