OFFSET
0,3
COMMENTS
This is the scaled first difference sequence of A268924. See the formula.
The digits of the other 3-adic integer sqrt(-2), are given in A271224. See also A268924 for the two 3-adic numbers sqrt(-2), called there u and -u.
a(n) is the unique solution of the linear congruence 2*A268924(n)*a(n) + A271225(n) == 0 (mod 3), n>=1. Therefore only the values 0, 1, and 2 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case. a(0) = 1 follows from the formula given below.
For details see the Wolfdieter Lang link under A268992.
The first k digits in the base 3 representation of Lucas(3^n) give the first k terms of the sequence. For example, the base 3 representation of Lucas(3^5) = 84722519070079276 begins 1 + 1*3 + 2*(3^2) + 0*(3^3) + 0*(3^4) + ... so the sequence begins [1, 1, 2, 0, 0, ...]. - Peter Bala, Nov 15 2022
REFERENCES
Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 86 and 77-78.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
BCMATH Congruence Programs, Finding a p-adic square root of a quadratic residue (mod p), p an odd prime.
FORMULA
EXAMPLE
a(4) = 0 because 2*22*3 + 6 = 138 == 0 (mod 3).
a(4) = - 6*(2*22) (mod 3) = -0*(2*1) (mod 3) = 0.
A268924(5) = 22 = 1*3^0 + 1*3^1 + 2*3^2 + 0*3^3 + 0*3^4.
MAPLE
# uses properties of the numbers Lucas(3^n) = A006267(n)
a := proc(n) option remember; if n = 1 then 1 else irem(a(n-1)^3 + 3*a(n-1), 3^n) end if; end proc:
convert(a(70), base, 3); # Peter Bala, Nov 15 2022
PROG
(PARI) a(n) = truncate(sqrt(-2+O(3^(n+1))))\3^n; \\ Michel Marcus, Apr 09 2016
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Wolfdieter Lang, Apr 05 2016
STATUS
approved