login
A271204
Triangle of generalized Stirling numbers of the second kind S(n,k) associated with the generalized Bell numbers A271049(n); S(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Gamma((j+2)/3)*Gamma(3*n+j-1)/(Gamma(j)*Gamma(n+(j-1)/3))/(3^(n-1)*k!).
0
1, 2, 1, 40, 50, 14, 1, 2240, 4240, 2200, 440, 36, 1, 246400, 608960, 447200, 141520, 22080, 1760, 68, 1, 44844800, 134780800, 125843200, 53412800, 12015360, 1538320, 114800, 4900, 110, 1, 12197785600, 42767648000, 47935328000, 25213686400, 7308806400, 1268761760, 137790240, 9523920, 416000, 11050, 162, 1
OFFSET
0,2
COMMENTS
The n-th row sum gives A271049(n): Sum_{k=0..2*n}S(n,k) = A271049(n)
FORMULA
Special values of generalized hypergeometric functions of type 5F4, in Maple notation: S(n,k) = (((-1)^k*(3^(-n))*k/(4*(k!))) *(-12*GAMMA(3*n)*hypergeom([1/3-k/3,2/3-k/3,1-k/3,n+1/3,n+2/3],[1/3,2/3,2/3,4/3],1)/GAMMA(n)+6*(k-1)*GAMMA(4/3)*GAMMA(1+3*n)*hypergeom([2/3-k/3,1-k/3,4/3-k/3,2/3+n,n+1],[2/3,1,4/3,5/3],1)/GAMMA(n+1/3)-(k-2)*(k-1)*GAMMA(5/3)*GAMMA(3*n+2)*hypergeom([1-k/3,4/3-k/3,5/3-k/3,n+1,n+4/3],[4/3,4/3,5/3,2],1)/GAMMA(n+2/3)))
EXAMPLE
Example: S(n,k) in table form for n=0..4;
1
2,1
40,50,14,1
2240, 4240, 2200, 440, 36, 1
246400, 608960, 447200, 141520, 22080, 1760, 68, 1.
MAPLE
S:=proc(n, k) (((-1)^k*(3^(-n))*k/(4*(k!))) *(-12*GAMMA(3*n)*hypergeom([1/3-k/3, 2/3-k/3, 1-k/3, n+1/3, n+2/3], [1/3, 2/3, 2/3, 4/3], 1)/GAMMA(n)+6*(k-1)*GAMMA(4/3)*GAMMA(1+3*n)*hypergeom([2/3-k/3, 1-k/3, 4/3-k/3, 2/3+n, n+1], [2/3, 1, 4/3, 5/3], 1)/GAMMA(n+1/3)-(k-2)*(k-1)*GAMMA(5/3)*GAMMA(3*n+2)*hypergeom([1-k/3, 4/3-k/3, 5/3-k/3, n+1, n+4/3], [4/3, 4/3, 5/3, 2], 1)/GAMMA(n+2/3))); end;
for n from 1 to 6 do seq(round(evalf(S(n, kk))), kk=1..2*n) end do;
# The above Maple program reproduces the data without the initial value 1.
CROSSREFS
Cf. A271049.
Sequence in context: A038021 A127609 A228860 * A275706 A308749 A260884
KEYWORD
nonn,tabf
AUTHOR
Karol A. Penson, Apr 01 2016
STATUS
approved