login
A271182
a(n) = prime(n)^(2*n) - prime(n)^(n-1).
1
3, 78, 15600, 5764458, 25937409960, 23298084751188, 168377826535263360, 288441413566727295942, 3244150909895169974315088, 176994576151109738690640664532, 645590698195138072217104753157760, 43335257111193343900187118461545288548
OFFSET
1,1
FORMULA
a(n) = sigma(prime(n)^n) * phi(prime(n)^n) = A062354(A062457(n)).
MAPLE
A271182:=n->ithprime(n)^(2*n)-ithprime(n)^(n-1): seq(A271182(n), n=1..15);
MATHEMATICA
Table[Prime[n]^(2*n) - Prime[n]^(n - 1), {n, 12}]
PROG
(Magma) [NthPrime(n)^(2*n)-NthPrime(n)^(n-1) : n in [1..12]];
(PARI) a(n) = prime(n)^(2*n) - prime(n)^(n-1); \\ Altug Alkan, Apr 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 07 2016
STATUS
approved