%I #15 Apr 02 2016 08:59:05
%S 0,0,9,6,3,3,8,3,2,5,4,1,0,4,5,1,9,6,0,5,1,5,5,1,8,4,0,7,0,9,6,8,0,4,
%T 3,5,3,5,9,8,1,4,8,3,3,8,5,2,0,4,6,0,8,2,0,6,4,3,8,1,6,3,8,4,4,1,8,4,
%U 4,2,9,5,8,7,7,9,1,1,6,7,7,8,1,8,7,1,1,9,6,0,1,8,8,9,4,6
%N Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(5).
%C The logarithm of the fifth Bendersky constant.
%H G. C. Greubel, <a href="/A271172/b271172.txt">Table of n, a(n) for n = 0..2000</a>
%F log(A(5)) = (1/6)*HarmonicNumber(5)*Bernoulli(6) - RiemannZeta'(-5).
%F log(A(5)) = (BernoulliB(6)/6)*(EulerGamma + log(2*Pi) - Zeta'(6)/Zeta(6)).
%e 0.009633832541045196051551840709680435359814...
%t Join[{0, 0}, RealDigits[(BernoulliB[6]/6)*(EulerGamma + Log[2*Pi] - Zeta'[6]/Zeta[6]), 10, 100] // First]
%Y Cf. A243265, A259070.
%K nonn,cons
%O 0,3
%A _G. C. Greubel_, Apr 01 2016