login
Primes of the form 42*k^3 + 270*k^2 - 26436*k + 250703 in order of increasing k.
13

%I #44 Jul 19 2018 05:44:09

%S 250703,224579,199247,174959,151967,130523,110879,93287,77999,65267,

%T 55343,48479,44927,44939,48767,56663,68879,85667,107279,133967,165983,

%U 203579,247007,296519,352367,414803,484079,560447,644159,735467,834623,941879,1057487

%N Primes of the form 42*k^3 + 270*k^2 - 26436*k + 250703 in order of increasing k.

%H Robert Price, <a href="/A271144/b271144.txt">Table of n, a(n) for n = 1..3092</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>

%e 151967 is prime and it is in this sequence since 151967 = 42*4^3 + 270*4^2 - 26436*4 + 250703.

%t n = Range[0, 100]; Select[42n^3 + 270n^2 - 26436n + 250703, PrimeQ[#] &]

%Y Cf. A050265 - A050268, A005846, A007641, A007635, A048988, A256585

%Y Cf. A271980, A272074, A272075, A272118, A272159, A271143 (associated k).

%K nonn

%O 1,1

%A _Robert Price_, Apr 23 2016