login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271114 Expansion of (1+x)*(2+x)/(1-x)^2. 2
2, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: (1+x)*(2+x)/(1-x)^2.

a(n) = A270700(n)/6.

a(n) = 6*n+1 = A016921(n) for n>0.

a(n) = 2*a(n-1)-a(n-2) for n>2.

E.g.f.: 1 + (1+6*x)*exp(x). - G. C. Greubel, Mar 31 2016

From Bruno Berselli and G. C. Greubel, Mar 31 2016: (Start)

a(5*m+1) = 30*m + 7 = A132231(m+1).

a(5*m+2) = 30*m + 13 = A082369(m+1).

a(5*m+3) = 30*m + 19 = A156376(m).

a(5*m+4) = 30*m + 25 = 5*A016969(m).

a(5*m+5) = 30*m + 31 = A128470(m+1). (End)

a(n) = A100764(n+3) for n >= 1. - Georg Fischer, Oct 30 2018

MAPLE

a:=series((1+x)*(2+x)/(1-x)^2, x=0, 55): seq(coeff(a, x, n), n=0..54); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

Join[{2}, LinearRecurrence[{2, -1}, {7, 13}, 100]] (* G. C. Greubel, Mar 31 2016 *)

PROG

(PARI) Vec((1+x)*(2+x)/(1-x)^2 + O(x^70))

CROSSREFS

Cf. A016921, A270700.

Cf. A016969, A082369, A100764, A128470, A132231, A156376.

Sequence in context: A020623 A109346 A140550 * A138646 A118755 A231383

Adjacent sequences:  A271111 A271112 A271113 * A271115 A271116 A271117

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Mar 31 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 07:25 EST 2022. Contains 350573 sequences. (Running on oeis4.)