login
A271094
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 275", based on the 5-celled von Neumann neighborhood.
1
4, 0, 35, -35, 107, -107, 211, -211, 347, -347, 515, -515, 715, -715, 947, -947, 1211, -1211, 1507, -1507, 1835, -1835, 2195, -2195, 2587, -2587, 3011, -3011, 3467, -3467, 3955, -3955, 4475, -4475, 5027, -5027, 5611, -5611, 6227, -6227, 6875, -6875, 7555
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 30 2016: (Start)
a(n) = 4-9*(-1)^n+(4+8*(-1)^n)*n+4*(-1)^n*n^2 for n>1.
a(n) = 4*n^2+12*n-5 for n>1 and even.
a(n) = -4*n^2-4*n+13 for n>1 and odd.
a(n) = -a(n-1)+2*a(n-2)+2*a(n-3)-a(n-4)-a(n-5) for n>6.
G.f.: (4+4*x+27*x^2-8*x^3+6*x^4+4*x^5-5*x^6) / ((1-x)^2*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=275; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A271091.
Sequence in context: A271280 A271086 A271292 * A110947 A372212 A270167
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 30 2016
STATUS
approved