login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271047 A prime number sieve defined by the recurrence: T(n, k) = If n = k then 1 else if k divides n then -Sum_{i=k+1..n} T(n, i) else T(n,k) = 0. 0
1, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

Same negative sum as in the recurrence for the Möbius function except that it is applied at all the divisors and not only in the first column. The table therefore acts as a prime number sieve giving the characteristic sequence of prime numbers in the first column. Row sums are 1,0,0,0,0,0,0,0,0,...

LINKS

Table of n, a(n) for n=1..78.

FORMULA

T(n, k) = If n = k then 1 else if k divides n then -Sum_{i=k+1..n} T(n, i) else T(n,k) = 0.

EXAMPLE

{

{1},

{-1, 1},

{-1, 0, 1},

{0, -1, 0, 1},

{-1, 0, 0, 0, 1},

{0, 0, -1, 0, 0, 1},

{-1, 0, 0, 0, 0, 0, 1},

{0, 0, 0, -1, 0, 0, 0, 1},

{0, 0, -1, 0, 0, 0, 0, 0, 1},

{0, 0, 0, 0, -1, 0, 0, 0, 0, 1},

{-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},

{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1}

}

MATHEMATICA

(* recurrence *) Clear[t, n, k, nn]; nn = 12; t[n_, k_] := t[n, k] = If[n == k, 1, If[Mod[n, k] == 0, -Sum[t[n, i], {i, k + 1, n}], 0]]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]]

CROSSREFS

Sequence in context: A115952 A115524 A117198 * A054525 A174852 A065333

Adjacent sequences:  A271044 A271045 A271046 * A271048 A271049 A271050

KEYWORD

sign

AUTHOR

Mats Granvik, Mar 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 01:52 EDT 2019. Contains 327207 sequences. (Running on oeis4.)