The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270885 Irregular triangle read by rows, listing the digits 1,0,-1 in the representation of n > 0 in the binary balanced system (cf. comment in A268411). 6
 1, -1, 1, -1, 0, 1, 0, -1, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 0, 1, 0, 0, -1, 1, -1, 0, 0, 0, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The n-th row contains k pairs of 1,-1 if and only if the number of runs of 1's in the binary representation of n is k. All row sums are equal to 0. Ignoring zero terms, we obtain an alternating sequence of 1,-1 (A033999). Sequence of numbers having no 0's in the binary balanced system is A002450. Minimal number having n >= 0 zeros in the binary balanced system is A000079(n). LINKS David A. Corneth, Table of n, a(n) for n = 1..10020 (first 1003 rows flattened) Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv:1603.04434 [math.NT], 2016. EXAMPLE Let n = 7 = 2^2 + 2 + 1. To convert this to the binary balanced system, every 2^i should be written in the form 2^(i+1) - 2^i. Then 7 = 2^3 - 2^2 + 2^2 - 2^1 + 2^1 - 1 = 2^3 - 1 = 100-1_b. In the binary balanced system we have the representations (irregular triangle)    1 = {1,-1}    2 = {1,-1,0}    3 = {1,0,-1}    4 = {1,-1,0,0}    5 = {1,-1,1,-1}    6 = {1,0,-1,0}    7 = {1,0,0,-1}    8 = {1,-1,0,0,0}    9 = {1,-1,0,1,-1}   10 = {1,-1,1,-1,0}   ... MATHEMATICA Array[Plus @@ {PadRight[#, Length[#] + 1], -PadLeft[#, Length[#] + 1]} &@ IntegerDigits[#, 2] &, {21}] // Flatten (* Michael De Vlieger, Mar 25 2016 *) PROG (PARI) row(n) = {b=concat(0, binary(n)); for(i=2, #b, if(b[i] == 1, b[i-1] += 1; b[i] = -1)); b} first(n) = {my(t = 0, i = 1); while(t < n, t+=(logint(i<<1, 2) + 1); i++); concat(vector(i, j, row(j)))} \\ David A. Corneth, Jan 21 2019 CROSSREFS Cf. A000079, A002450, A033999, A039724, A140267, A268411. Sequence in context: A065333 A244611 A189289 * A127972 A103451 A103452 Adjacent sequences:  A270882 A270883 A270884 * A270886 A270887 A270888 KEYWORD sign,base,tabf AUTHOR Vladimir Shevelev, Mar 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 16:34 EST 2020. Contains 331207 sequences. (Running on oeis4.)