This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270879 Expansion of (x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8). 0
 0, 1, 1, 2, 7, 10, 20, 34, 65, 124, 230, 430, 800, 1494, 2792, 5210, 9727, 18155, 33892, 63271, 118110, 220484, 411588, 768337, 1434304, 2677500, 4998252, 9330536, 17417876, 32515004, 60697720, 113308101, 211519073, 394855430, 737100483, 1375989990 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,2,0,0,1). FORMULA a(n) = n*Sum_{j=0..(n-1)/3} binomial(n-3*j,n-4*j)*F(n-3*j)/(n-3*j), where F(n) = A000045(n). MATHEMATICA CoefficientList[Series[(x + 4 x^4)/(1 - x - x^2 - x^4 - 2 x^5 - x^8), {x, 0, 35}], x] (* Michael De Vlieger, Mar 28 2016 *) LinearRecurrence[{1, 1, 0, 1, 2, 0, 0, 1}, {0, 1, 1, 2, 7, 10, 20, 34}, 40] (* Harvey P. Dale, Jul 03 2017 *) PROG (Maxima) a(n):=n*sum(binomial(n-3*j, n-4*j)/(n-3*j)*fib(n-3*j), j, 0, (n-1)/3); /* or */ taylor((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8), x, 0, 10); (PARI) a(n) = n*sum(k=0, (n-1)/3, binomial(n-3*k, n-4*k)/(n-3*k)*fibonacci(n-3*k)); \\ Altug Alkan, Mar 25 2016 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8))); CROSSREFS Cf. A000045. Sequence in context: A125852 A155171 A049830 * A022302 A023855 A191832 Adjacent sequences:  A270876 A270877 A270878 * A270880 A270881 A270882 KEYWORD nonn,easy AUTHOR Vladimir Kruchinin, Mar 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 09:36 EST 2019. Contains 329953 sequences. (Running on oeis4.)