Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Sep 08 2022 08:46:16
%S 34,26259,294888,2528263,16531326,84603579,353479684,1252968303,
%T 3885899418,10799026531,27392790624,64342966359,141552806518,
%U 294334006923,582732259836,1105171977919,2017898582034,3562049183283,6100587181528,10167796877991,16534554287214
%N a(n) = n^10 + 9*n^9 + 53*n^8 + 218*n^7 + 695*n^6 + 1754*n^5 + 3572*n^4 + 5854*n^3 + 7510*n^2 + 6559*n + 34.
%H Vincenzo Librandi, <a href="/A270874/b270874.txt">Table of n, a(n) for n = 0..1000</a>
%H Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 10th row).
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F G.f.: (34+25885*x+7909*x^2+723130*x^3+617758*x^4+1806700*x^5+ 96940*x^6+428806*x^7-101360*x^8+25527*x^9-2529*x^10)/(1-x)^11.
%F a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).
%t Table[n^10 + 9 n^9 + 53 n^8 + 218 n^7 + 695 n^6 + 1754 n^5 + 3572 n^4 + 5854 n^3 + 7510 n^2 + 6559 n + 34, {n, 0, 30}]
%t LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{34,26259,294888,2528263,16531326,84603579,353479684,1252968303,3885899418,10799026531,27392790624},30] (* _Harvey P. Dale_, Apr 10 2017 *)
%o (Magma) [n^10 +9*n^9 +53*n^8 +218*n^7 +695*n^6 +1754*n^5 +3572*n^4 +5854*n^3 +7510*n^2 +6559*n +34: n in [0..30]];
%o (PARI) x='x+O('x^99); Vec((34+25885*x+7909*x^2+723130*x^3+617758*x^4+1806700*x^5+ 96940*x^6+428806*x^7-101360*x^8+25527*x^9-2529*x^10)/(1-x)^11) \\ _Altug Alkan_, Apr 05 2016
%Y Cf. A270867, A270868, A270869, A270870, A270871, A270872, A270873.
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Apr 05 2016