login
A270839
Integers k such that (A003266(k)/A000045(k-1)) is not divisible by k.
1
2, 3, 4, 7, 9, 11, 19, 23, 31, 43, 59, 67, 71, 79, 83, 103, 127, 131, 163, 167, 179, 191, 223, 227, 239, 251, 271, 283, 311, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 571, 587, 599, 607, 631, 643, 647, 659, 683, 719, 727, 739, 751, 787, 823, 827, 839
OFFSET
1,1
COMMENTS
A270777 is a subsequence.
It appears that this sequence generates prime numbers except 4 and 9. [Verified for the first 500 terms. - Amiram Eldar, Apr 01 2021]
LINKS
EXAMPLE
3 is a term because 1*2 is not divisible by 3.
7 is a term because 1*1*2*3*5*13 is not divisible by 7.
MATHEMATICA
Select[Range[2, 840], ! Divisible[Fibonorial@ #/Fibonacci[# - 1], #] &] (* Version 10, or *) Select[Range[2, 840], ! Divisible[Product[Fibonacci@ k, {k, #}]/Fibonacci[# - 1], #] &] (* Michael De Vlieger, Mar 24 2016 *)
PROG
(PARI) t(n) = fibonacci(n) * prod(k=1, n-2, Mod(fibonacci(k), n));
for(n=2, 1e3, if(lift(t(n)) != 0, print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 23 2016
EXTENSIONS
Offset corrected by Amiram Eldar, Apr 01 2021
STATUS
approved