login
a(n) is the number of arithmetic progressions of length 3 among the quadratic residues modulo prime(n).
0

%I #7 Mar 25 2016 06:49:57

%S 0,0,0,0,10,12,16,36,44,84,90,144,160,210,230,312,406,420,528,560,576,

%T 702,820,880,1056,1200,1224,1378,1404,1456,1890,2080,2176,2346,2664,

%U 2700,2964,3240,3320,3612,3916,3960,4370,4416,4704,4752,5460,5994,6328,6384,6496

%N a(n) is the number of arithmetic progressions of length 3 among the quadratic residues modulo prime(n).

%C Wraparound progressions as well as decreasing progressions are counted.

%D R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.29 p. 111.

%F a(n) = (prime(n)-1)*floor((prime(n)-2)/8).

%e For p=prime(5)=11, whose quadratic residues are (1,3,4,5,9), some examples of 3-term arithmetic progressions are (3,4,5), (4,9,3) and (5,4,3).

%t Table[(# - 1) Floor[(# - 2)/8] &@ Prime@ n, {n, 51}] (* _Michael De Vlieger_, Mar 23 2016 *)

%o (PARI) a(n) = my(p=prime(n)); (p-1)*((p-2)\8);

%Y Cf. A063987.

%K nonn

%O 1,5

%A _Michel Marcus_, Mar 23 2016