%I #17 Apr 03 2016 22:16:32
%S 5281,5591,6211,6271,8581,8861,9011,9661,10391,10691,11621,12011,
%T 12911,13451,15901,19001,19801,20521,20921,21481,21701,22901,22921,
%U 23371,26141,27241,27481,28001,28711,29131,30971,31321,31511,32341,32381,34211,38261,38611
%N Hyperartiads.
%C Artiads (A001583) for which 5 is a quintic residue. [Lehmer] - _Eric M. Schmidt_, Apr 01 2016
%H Eric M. Schmidt, <a href="/A270798/b270798.txt">Table of n, a(n) for n = 1..1000</a>
%H E. Lehmer, <a href="http://dx.doi.org/10.1016/0022-247X(66)90145-4">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131. Beware errors!
%H E. Lehmer, <a href="/A001583/a001583b.pdf">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy]
%o (Sage) def is_hyperartiad(n) : return n % 10 == 1 and is_prime(n) and 5.powermod((n-1)//5, n) == 1 and fibonacci((n-1)//5) % n == 0 # _Eric M. Schmidt_, Apr 01 2016
%Y Cf. A001583.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Mar 31 2016
%E Extended and corrected by _Eric M. Schmidt_, Apr 01 2016