login
A270779
Primes p such that sigma(p-1) + phi(p-1) = (5p-7)/2.
2
3, 5, 7, 17, 67, 257, 65537, 8942223643
OFFSET
1,1
COMMENTS
Primes p such that A065387(p-1) = (5p-7)/2.
Fermat primes from A019434 are terms.
Prime terms from A270837.
a(9), if it exists, is larger than 10^13. - Giovanni Resta, Apr 10 2016
EXAMPLE
17 is in the sequence because sigma(16)+phi(16) = 31+8 = 39 = (5*17-7)/2.
MATHEMATICA
Select[Prime@ Range[10^4], 2 (DivisorSigma[1, # - 1] + EulerPhi[# - 1]) == 5 # - 7 &] (* Michael De Vlieger, Mar 24 2016 *)
PROG
(Magma) [n: n in[1..10^7] | IsPrime(n) and 2*(SumOfDivisors(n-1) + EulerPhi(n-1)) eq 5*n-7]
(PARI) lista(nn) = forprime(p=2, nn, if (sigma(p-1) + eulerphi(p-1) == (5*p-7)/2, print1(p, ", "))); \\ Michel Marcus, Mar 23 2016
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Mar 22 2016
EXTENSIONS
a(8) from Michel Marcus, Mar 23 2016
STATUS
approved