login
Smallest non-Wieferich prime to base n, i.e., smallest prime p such that n^(p-1) =/= 1 (mod p^2).
2

%I #15 Mar 25 2016 07:49:51

%S 2,2,2,3,2,2,2,3,2,2,2,3,2,2,2,5,2,2,2,3,2,2,2,3,2,2,2,3,2,2,2,3,2,2,

%T 2,5,2,2,2,3,2,2,2,3,2,2,2,3,2,2,2,5,2,2,2,3,2,2,2,3,2,2,2,3,2,2,2,3,

%U 2,2,2,5,2,2,2,3,2,2,2,3,2,2,2,3,2,2,2

%N Smallest non-Wieferich prime to base n, i.e., smallest prime p such that n^(p-1) =/= 1 (mod p^2).

%C A256236 gives the smallest i such that a(i) = A000040(n).

%C a(n) > 2 iff A039951(n) = 2.

%C a(n) > 3 iff A268352(n) = 3.

%C Does every prime appear in the sequence?

%C It is easy to see that the answer to the previous question is "yes" if and only if A256236 is infinite.

%C The ABC-(k, Epsilon) conjecture with k >= 2 and Epsilon > 0 such that 1/(1/Epsilon + 1) + 1/k <= log(2)/(24*log(a)) implies that a(n) exists for all n (cf. Broughan, 2006; theorem 5.6).

%H Felix Fröhlich, <a href="/A270776/b270776.txt">Table of n, a(n) for n = 2..10000</a>

%H K. A. Broughan, <a href="http://nzjm.math.auckland.ac.nz/images/d/d6/Relaxations_of_the_ABC_Conjecture_using_integer_k%27th_roots.pdf">Relaxations of the abc conjecture using integer k'th roots</a>, New Zealand Journal of Mathematics, 35 (2006), 121-136.

%e The sequence of base-17 Wieferich primes (A128668) starts 2, 3, 46021. Thus the smallest non-Wieferich prime to base 17 is 5 and hence a(17) = 5.

%o (PARI) a(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)!=1, return(p)))

%Y Cf. A039951, A256236, A268352.

%K nonn

%O 2,1

%A _Felix Fröhlich_, Mar 22 2016