The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270774 a(n) = (A005706(n) - A194459(n))/5. 0
 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 73, 76, 79, 82, 85, 91, 94, 97, 100, 103, 112, 115, 118, 121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS A combinatorial interpretation is given in the Edgar link. LINKS G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m, The American Mathematical Monthly, Vol. 122, No. 9 (November 2015), pp. 880-885. G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m. Tom Edgar, The distribution of the number of parts of m-ary partitions modulo m., arXiv:1603.00085 [math.CO], 2016. FORMULA Let b(0) = 1 and b(n) = b(n-1) + b(floor(n/5)) and let c(n) = Product_{i=0..k}(n_i+1) where n = Sum_{i=0..k}n_i*5^i is the base 5 representation of n. Then a(n) = (1/5)*(b(n) - c(n)). MATHEMATICA b[0] = 1; b[n_] := b[n] = b[n-1] + b[Floor[n/5]]; c[n_] := If[OddQ[n], 2 Count[Table[Binomial[n, k], {k, 0, (n-1)/2}], c_ /; !Divisible[c, 5]], 2 Count[Table[Binomial[n, k], {k, 0, (n-2)/2}], c_ /; !Divisible[c, 5]] + Boole[!Divisible[Binomial[n, n/2], 5]]]; a[n_] := (b[n] - c[n])/5; Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Feb 15 2019 *) PROG (Sage) def b(n): A=[1] for i in [1..n]: A.append(A[i-1] + A[i//5]) return A[n] print([(b(n)-prod(x+1 for x in n.digits(5)))/5 for n in [0..63]]) CROSSREFS Cf. A005706, A194459, A268127, A268128, A268443. Sequence in context: A105591 A130497 A178154 * A263144 A126715 A158805 Adjacent sequences: A270771 A270772 A270773 * A270775 A270776 A270777 KEYWORD nonn AUTHOR Tom Edgar, Mar 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 20:46 EST 2022. Contains 358698 sequences. (Running on oeis4.)